本文介绍了一个分散的多代理轨迹计划(MATP)算法,该算法保证在有限的沟通范围内在障碍物丰富的环境中生成安全,无僵硬的轨迹。所提出的算法利用基于网格的多代理路径计划(MAPP)算法进行僵局,我们引入了子目标优化方法,使代理会收敛到从MAPP生成的无僵局生成的路点。此外,提出的算法通过采用线性安全走廊(LSC)来确保优化问题和避免碰撞的可行性。我们验证所提出的算法不会在随机森林和密集的迷宫中造成僵局,而不论沟通范围如何,并且在飞行时间和距离方面的表现都优于我们以前的工作。我们通过使用十个四肢的硬件演示来验证提出的算法。
translated by 谷歌翻译
语言表示建模的最新进展广泛影响了密集检索模型的设计。特别是,许多高性能的密集检索模型使用BERT评估查询和文档的表示形式,并随后应用基于余弦相似的评分来确定相关性。然而,已知BERT表示遵循狭窄的锥形的各向异性分布,对于基于余弦相似的评分,这种各向异性分布可能是不希望的。在这项工作中,我们首先表明基于伯特的DR还遵循各向异性分布。为了解决这个问题,我们介绍了无监督的后处理方法,使流动和美白归一化,并开发了令牌方法,除了将后处理方法应用于密集的检索模型的表示形式外,还针对序列方法。我们表明,所提出的方法可以有效地增强各向同性的表示形式,然后我们与Colbert和Repbert进行实验,以表明文件重新排列的性能(NDCG 10)可以改善5.17 \%$ \ sim $ 8.09 \ sim $ 8.09 \ Colbert的%和6.88 \%$ \ sim $ 22.81 \%的Repbert。为了检查各向同性表示对改善DR模型的鲁棒性的潜力,我们研究了测试数据集与培训数据集不同的分数外任务。结果表明,各向同性表示可以达到普遍改善的性能。例如,当训练数据集为MS-Marco并且测试数据集为鲁棒04时,各向同性后处理可以提高基线性能高达24.98 \%。此外,我们表明,使用过分分布数据集训练的各向同性模型甚至可以胜过通过分布数据集训练的基线模型。
translated by 谷歌翻译
本文介绍了一个新的在线多代理轨迹规划算法,可确保在杂乱的环境中产生安全,动态可行的轨迹。所提出的算法利用线性安全走廊(LSC)来制定分布式轨迹优化问题,只有可行的约束,因此它不采用松弛变量或软限制以避免优化失败。我们采用基于优先的目标规划方法来防止僵局而无需额外的程序来确定要屈服的机器人。所提出的算法可以平均将60个代理的轨迹平均每代理使用英特尔I7笔记本电脑计算60个代理,并与基于软限制的基线相比,显示了类似的飞行距离和距离。我们核实所提出的方法可以在随机森林和室内空间中没有僵局达到目标,并且我们通过在迷宫状环境中使用10个时段的真正飞行试验验证了所提出的算法的安全性和可操作性。
translated by 谷歌翻译
The automated segmentation and tracking of macrophages during their migration are challenging tasks due to their dynamically changing shapes and motions. This paper proposes a new algorithm to achieve automatic cell tracking in time-lapse microscopy macrophage data. First, we design a segmentation method employing space-time filtering, local Otsu's thresholding, and the SUBSURF (subjective surface segmentation) method. Next, the partial trajectories for cells overlapping in the temporal direction are extracted in the segmented images. Finally, the extracted trajectories are linked by considering their direction of movement. The segmented images and the obtained trajectories from the proposed method are compared with those of the semi-automatic segmentation and manual tracking. The proposed tracking achieved 97.4% of accuracy for macrophage data under challenging situations, feeble fluorescent intensity, irregular shapes, and motion of macrophages. We expect that the automatically extracted trajectories of macrophages can provide pieces of evidence of how macrophages migrate depending on their polarization modes in the situation, such as during wound healing.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
This paper proposes a new regularization algorithm referred to as macro-block dropout. The overfitting issue has been a difficult problem in training large neural network models. The dropout technique has proven to be simple yet very effective for regularization by preventing complex co-adaptations during training. In our work, we define a macro-block that contains a large number of units from the input to a Recurrent Neural Network (RNN). Rather than applying dropout to each unit, we apply random dropout to each macro-block. This algorithm has the effect of applying different drop out rates for each layer even if we keep a constant average dropout rate, which has better regularization effects. In our experiments using Recurrent Neural Network-Transducer (RNN-T), this algorithm shows relatively 4.30 % and 6.13 % Word Error Rates (WERs) improvement over the conventional dropout on LibriSpeech test-clean and test-other. With an Attention-based Encoder-Decoder (AED) model, this algorithm shows relatively 4.36 % and 5.85 % WERs improvement over the conventional dropout on the same test sets.
translated by 谷歌翻译
Affect understanding capability is essential for social robots to autonomously interact with a group of users in an intuitive and reciprocal way. However, the challenge of multi-person affect understanding comes from not only the accurate perception of each user's affective state (e.g., engagement) but also the recognition of the affect interplay between the members (e.g., joint engagement) that presents as complex, but subtle, nonverbal exchanges between them. Here we present a novel hybrid framework for identifying a parent-child dyad's joint engagement by combining a deep learning framework with various video augmentation techniques. Using a dataset of parent-child dyads reading storybooks together with a social robot at home, we first train RGB frame- and skeleton-based joint engagement recognition models with four video augmentation techniques (General Aug, DeepFake, CutOut, and Mixed) applied datasets to improve joint engagement classification performance. Second, we demonstrate experimental results on the use of trained models in the robot-parent-child interaction context. Third, we introduce a behavior-based metric for evaluating the learned representation of the models to investigate the model interpretability when recognizing joint engagement. This work serves as the first step toward fully unlocking the potential of end-to-end video understanding models pre-trained on large public datasets and augmented with data augmentation and visualization techniques for affect recognition in the multi-person human-robot interaction in the wild.
translated by 谷歌翻译
Training agents via off-policy deep reinforcement learning (RL) requires a large memory, named replay memory, that stores past experiences used for learning. These experiences are sampled, uniformly or non-uniformly, to create the batches used for training. When calculating the loss function, off-policy algorithms assume that all samples are of the same importance. In this paper, we hypothesize that training can be enhanced by assigning different importance for each experience based on their temporal-difference (TD) error directly in the training objective. We propose a novel method that introduces a weighting factor for each experience when calculating the loss function at the learning stage. In addition to improving convergence speed when used with uniform sampling, the method can be combined with prioritization methods for non-uniform sampling. Combining the proposed method with prioritization methods improves sampling efficiency while increasing the performance of TD-based off-policy RL algorithms. The effectiveness of the proposed method is demonstrated by experiments in six environments of the OpenAI Gym suite. The experimental results demonstrate that the proposed method achieves a 33%~76% reduction of convergence speed in three environments and an 11% increase in returns and a 3%~10% increase in success rate for other three environments.
translated by 谷歌翻译
Neural fields, also known as coordinate-based or implicit neural representations, have shown a remarkable capability of representing, generating, and manipulating various forms of signals. For video representations, however, mapping pixel-wise coordinates to RGB colors has shown relatively low compression performance and slow convergence and inference speed. Frame-wise video representation, which maps a temporal coordinate to its entire frame, has recently emerged as an alternative method to represent videos, improving compression rates and encoding speed. While promising, it has still failed to reach the performance of state-of-the-art video compression algorithms. In this work, we propose FFNeRV, a novel method for incorporating flow information into frame-wise representations to exploit the temporal redundancy across the frames in videos inspired by the standard video codecs. Furthermore, we introduce a fully convolutional architecture, enabled by one-dimensional temporal grids, improving the continuity of spatial features. Experimental results show that FFNeRV yields the best performance for video compression and frame interpolation among the methods using frame-wise representations or neural fields. To reduce the model size even further, we devise a more compact convolutional architecture using the group and pointwise convolutions. With model compression techniques, including quantization-aware training and entropy coding, FFNeRV outperforms widely-used standard video codecs (H.264 and HEVC) and performs on par with state-of-the-art video compression algorithms.
translated by 谷歌翻译